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A grid generator in two dimensions with directional control is presented. This generator 
minimizes an appropriate functional over a finite domain when two reference fields are given. 
Some problems of uniqueness of the associated partial differential equations were investigated. 
The directional control of given grids was shown in some simple examples. The directional 
control should, in general, be combined with other grid generators for mesh adaptation for 
the solution of actual physical problems. 0 1988 Academic Press, Inc. 

INTRODUCTION 

A functional used for mesh generation X = (x(5, q), ~(5, q)) can be formulated to 
optimize a variety of properties [ 11, including aspect ratio, orthogonality, and grid 
spacing. Here, we introduce two new functionals that control the orientation of the 
r and q coordinate lines according to given vector fields. The Euler-Lagrange 
equations that are derived are the partial differential equations whose solution gives 
a grid oriented according to the specified vector fields. 

The vector fields (one for every coordinate line) can be induced from the physics 
of the problem and are functions of the physical domain. Therefore, the grid 
generator proposed in this work can be potentially useful for problems that involve 
mesh adaptation for the solution of problems in magnetodynamics, plasticity, as 
well as for fluid and solid mechanics that involve anisotropies. It can be shown that 
the directions of the coordinate lines can be constructed independently, thus 
accounting for possible anisotropies of the vector fields. 

422 
(X)21-9991/88 $3.00 
Copyright 0 1988 by Academic Press, Inc. 
All rights of reproduction in any form reserved 
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1. MATHEMATICAL FORMULATION 

In the present work we examine a functional in two dimensions, of the form: 

where A and B are directional vector fields given as functions of the physical coor- 
dinates x and y, defined on a simply connected finite domain D. These vector fields 
will be denoted as 

(2) 

with A 1, A2, B,, and B2 sufficiently smooth and bounded throughout D, and A # 0, 
B # 0 and A #B. In Eq. (1) 5 and q are the coordinates in the logical (com- 
putational) domain (Fig. la) and J is the Jacobian of the transformation 

J=x,Y,-X,Y, (3) 

with subscripts denoting partial derivatives. 
Mesh generation is achieved by minimizing the functional Id. This has the effect 

of including the normals to the curves of constant natural coordinates to coalign 

(b) 

FIG. 1. The directional control in a grid generation: (a) logical domain; (b) physical domain. 
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with the applied vector fields in the interior of D. This can be seen intuitively by 
realizing that V& for example, is the vector normal to the curve 5 = const (Fig. 1 b). 
The cross product [A x B] is proportional to the area of the parallelogram formed 
by A and VY. Hence, this area is minimized when these two vectors are colinear. 
Since the functional is positive definite we are guaranteed a minimum, which in fact 
is zero for an infinite domain. 

The solution of this variational problem is tractable by means of the Euler- 
Lagrange equations for zero variations of the boundary [2], given by 

(a/ax- a2/a<axs-a*/atj ax,) F=O (4) 

and 

(alay-a*/at ay,-a*/aq ayq) F=O. (5) 

In our problem, with the appropriate interchange of variables, the functional 
given by (1) becomes 

Id= 
I s 

M NFd(dq, 
1 1 

(6) 

where F is the kernel of the functional, given by 

F=G*+H* (7) 

with 

and 

G=A,x,+A2y,,=A.Xrl (8) 

H=B,xr+B2y5=B.Xc. (9) 

A full derivation of Eqs. (7), (8), and (9) is presented in Appendix A.l. The limits 
of Eq. (6) imply that the discretization of the computational domain accounts for 
integer values of 5 and q. It can be further observed that (1) tends to make the grid 
lines parallel to the vector field, whereas (6) tends to make the grid lines perpen- 
dicular to the vector field. This indicates the difference in the formulation of the 
minimization problem in the physical and the computational space respectively. 

From Eqs. (4), (5), and (7) follow 

=xcrB:+x,,A:+~rrB,Bz+y,,A,Az (10) 
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W(x,(Wla~) + Y,W,/~YN + H(x@WY) + ~&%/4~))1 
-CH(WX) + G(aA,/h) + &MWa~) + Y&WX)) 

+A*cq~4/~rl) + Y,Gww)1 

=x~sB~B~+x~~~A~A~+Y~~;B:+Y~,A: (11) 

The intermediate results for the various terms that appear in Eqs. (10) and (11) are 
given in Appendix A.2. Equations (10) and (11) can be solved for x and y, giving 
the physical coordinates of the directional controlled grid. Notice that these 
equations have no cross second-order derivatives. 

In the degenerated case where A 1 B, = A, B, , Eqs. (10) and (11) reduce to one 
equation, and the right-hand side of both (10) and (11) becomes 

xet;B: +x,,A: + y&B: + yr,,W UW 

for k=AZ/A1=B2/B,; A, or B,#O, and 

xc&B: +x,,kA: + Y,,% + v,,A: (12b) 

for k=A,/A,=B,/B,; A, or B,#O. 
In this case the fields A and B are parallel. This leads to a degenerate mesh where 

5 and rl lines are parallel. Therefore, a natural constraint for the vector fields is that 
their components should satisfy A, B2 # A,B, in D. 

In addition to the functional given by Eq. (1 ), an alternative functional 
appropriate for directional control can be stated as 

Id = lD dx dy[(A x V<)* + (B x Vrj)‘]. (13) 

Note that the functional given by (13) is dimensionless (scale independent), 
whereas the functional given by (1) is not. Following the previous method we can 
obtain the set of Euler-Lagrange equations for (13) given by 

= xcc{(J2B, - Y,HJ) B, + y,(y,(G* + Hz) - B,HJ)} 

+~,,((J*A,+Y,GJ)A,+Y,(Y~(G~+H*)+A,GJ)} 

+x~~(Y~HJB~-Y,GJA,-Y~(Y~(G*+H*)--,HJ) 

-Y,(Y&G~+H~)+A,GJ)) 
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+y;&J’B,-yqHJ)B,-x,(y,(G’+H*)-B,HJ)} 

+Y,,((J*A, +y<GJ)A,-x,(y,(G2+H2)+A,GJ)} 

+yr,,{ygHJB2-y,GJA,+xe(y,(G2+H2)-BBIHJ) 

+x,(y<(G’ + H*) + A, GJ)} (14) 

=x~~{(J~B~+x,,HJ)B,+ y,(-x,(G*+H’)-B,HJ)} 

+x7,,{ (J’A, - x,GJ) A, + ye( -x&G* + Hz) + A,GJ)} 

+xev{ -xc HJB, + x,GJA, - y&-x&G* + Hz) - B,HJ) 

-y,(-xt(G2+H2)+AzGJ)) 

+ytt;{(J2B2+x,HJ)B2-x7(-xv(G2+H2)-B2HJ)} 

+y,,l{(J2A,-~eGJ)A2-~g(-~;(G2+H2)+A2GJ)} 

+y,,{ -x<HJBl- y,GJA,+x&-x&G*+ Hz)- B,HJ) 

+x,(-x&G* + H*) + A,GJ)}. (15) 

2. BOUNDARY CONDITIONS 

Let us suppose that we have one solution of the system of partial differential 
equations (10) and (11) for an unbounded region. Clearly, lines with 5 = const and 
q = const are natural boundaries that impose no further problems. The general 
boundary problem of a finite simply connected domain D was worked on the 
following simpler problem. 

Assuming constant vector fields, Eqs. (10) and (11) give 

O=X~;~B:+X,,A:+YS~B~B,+Y,,A,A~ 

0=~55B,B,+x,,A,A,+~tcB:+yBtlA:. 

Equations (16) form a hyperbolic system. Denote by 

(16) 

X=A,x+A,y 

Y=B,x+B,y. 
(17) 
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Then, since A, B2 - A2 B, = A # 0, Eqs. (16) can be written in characteristic form as 

x,,=o 
Y,, = 0. 

(18) 

The general solution of (18) is 

x= k,(1) + hl(rl) 

y= vz2(5) + ut). 

Equations (19) and (17), give a general solution of the form 

(19) 

x = A -lCBdkl(v) + h,(u))- AAwz(5) + b(t))1 
Y=A-‘CA,(rlg,(5)+h,(5))-B,(Sg,(rl)+h,(~))l 

(20) 

with g,(q), g,(t), h,(q), h,(c) to be determined from appropriate boundary 
conditions. 

At this point it is important to note that the boundaries of the physical domain D 
may not be solutions of (16) and in fact we will not force them to be, therefore, 
excluding possible boundary layer formation. We will consider the case where the 
points at the boundaries may move freely on the curves that define them. Let the 
boundary of D be constructed by four curves (Fig. 2), denoted as 

where the relations between x and y are assumed known for every boundary curve. 
We would like to investigate the boundary conditions that make this problem well 

(a) 

FIG. 2. Initial characteristic problem for A and B constant directional fields (Riemann’s problem). 
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posed and unique. Notice that the problem stated in the computational space is an 
initial value problem where the boundaries may serve as initial lines with the 
solution propagating from these lines. 

Assume that the boundaries (21a) and (21~) are described with discrte fixed 
nodes that are part of the solution (20). We may then write 

x(0, rl) = fl -‘CB*h,h)- A2(m2(0) + MO))1 
Y(OY v) = d -1CMlg2(o) + h2(0)) - B,h,(?)l 
x(5,0) = Lf -V*(Mo) +h*(O)) - A,&(01 
Y(ti 0) = d -‘MM<) - Bl(k,(O) + h,(O))l. 

Inverting (22), we have 

hl(?)=~lx(O,?)+~,Y(O,rl) 
h,(t) = Blx(t,O) + 6 Y(<, 0). 

Taking arbitrarily, x(0,0) = ~(0, 0) = 0, we find 

h,(O)=0 

h,(O) = 0 

w,(O) = B, ~(0, vl) + & ~(0, vl) 
bl(O) = A 1x(5,0) + A2 Y(L 0). 

(22) 

(23) 

(24) 

From (20), it can be shown that 

xq = ‘4 -‘CB,(Md + h;(v)) --A2 g,(t)1 
xc = d -‘C -A,(w;(S) + h;(t)) + B,g,(r)l 
v,=d-‘C-B,(5g;(?)+h’,(?))+A,g,(5)1 

(25) 

Y, = ~-‘CMd(S) + MO) - B, g,(v)1 

with primes denoting the derivatives with respect to the corresponding argument. 
The two additional conditions may indicate with what slope the mesh lines 

evolve from the initial curves (i.e., from physical considerations): 

(x,Y,N‘b~*)==0 

(xr ye) . (B, BAT = 0. 

Equations (26) with (25) can be integrated 

lTl(?) = g1(0) 

82(t) = gz(O) 

with g,(O) and g2(0) given by (24~) and (24d), respectively. 

(26) 

(27) 
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The solution of this problem (initial characteristic problem) gives straight lines of 
< = const starting from the fixed (21~) boundary, normal to A at that boundary and 
ending on the (21d) boundary. The q = const lines are also straight lines starting 
from the fixed points of the (21a) boundary, normal to B at that boundary and 
ending on the (21b) boundary (Fig. 2). Obviously, the boundary points on the 
(21b) and (21d) curves are determined from the solution of the problem. From the 
above analysis it can be shown that for certain combinations of boundary curves 
and direction field vectors, pathological cases may arise. Solution curves may inter- 
sect the boundary curves more than once or may not intersect them at all, or inter- 
sect each other, etc. Therefore, for a computationally acceptable grid, the direc- 
tional control functions should be used in addition to other mesh generators (i.e., a 
linear combination with the smoothness functional [l]) that ensure uniqueness 
when general types of domains, boundary conditions, and direction fields are used. 
In this paper we will not address these problems, assuming appropriate boundary 
curves and direction fields. 

3. NUMERICAL SOLUTION: LOCKING OF THE MESH 

The Euler-Lagrange equations (lo), (11) or (14), (15) can be solved by finite 
difference methods. The standard finite difference approximations for x are given by 

x~=(xi+l,j-xi-l,j)/2 

x.rl=(xi,j+1-xi,j-*)/2 

x55 = xi+ 1.1 -2Xi,j+Xi-I,j (28) 

X ~~=(Xi+l,j+l+Xi-l,j-1-Xi+l,j+l-Xi-l,j+1)/4 

xw =xi,j+l -  2xi, j + Xi,j- 1 

and similarly for y. In this case index i denotes the position of the ith node along 
the 5 coordinate and along j for the q coordinate. Note that g and 7 are normalized 
to take only integer values in the computational space. 

The system (lo), (11) of second-order partial differential equations with respect 
to x and y, was numerically integrated by the Jacobi iteration method [l]. The 
method minimizes the first variation of the residuals, 

where s1 and s2 are the source terms given by the left-hand side of (10) and (ll), 
respectively. 

This leads to direct vectorization of the increments of the solution for each 
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iteration. The increments, 6xU and 6yV(i, j = 5, q), of the solution are given by 
solving the system: 

(no summation over i and j). The iteration continues until1 the increments 6x, and 
6y, become less than a specified maximum tolerance. For the functional (1) we 
have 

aE,/axii= -~(B:+A:) 

a&,/axu= -~(B,B,+A,A~) 

a&,/ay,= -2(B,B,+A,A*) 

a&,/ay,i = -2(~; + A;). 

(31) 

The exact forms of the increments are given in Appendix A.3. 
By locking of the mesh, we imply that the increments, 6xii and SyU, are both zero 

at the first iteration and therefore the points of the initial mesh remain at their 
original position with F # 0. This is a feature of the Jacobi iteration (linearization of 
the original system). Throughout the discussion of the locking phenomenon we will 
assume that all variables are evaluated at the initial configuration. We will confine 
our discussion to the system (10) and (11). 

From (A.23) in Appendix A, it is obvious that locking may appear when the 
following conditions are both true 

or, equivalently, 

6xii = dy, = 0; i,.i= 5, rl 

E,(A:+B:)=EZ(A~A~+B,B~) 

&,(A:+B:)=&,(A,A,+B,B,) 
(32) 

in the whole domain D. From (32) it can be shown that locking occurs, if and only 
if, the following conditions hold: 

(a) a,=0 and AlA,+B,B2=0 or 
(b) .si =0 and aZ=O 

everywhere in D, where E, and s2 are given by (29). 
These locking conditions involve the directional fields, as well as the initial mesh 

configuration. Suppose, for example, that the initial guess for the mesh involves 
linear variations of x and y with respect to 5 and q. If in addition A and B are con- 
stant vectors, then e1 = e2 = 0 and therefore the initial mesh locks. It is apparent 
that for such cases the initial mesh should be modified. 
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This shortcoming of Jacobi iteration method together with the boundary 
condition analysis, motivated a boundary moving algorithm, such that locking is 
prevented and at the same time the correct slope of the mesh is assigned at the 
boundaries. The main steps of the algorithm are summarized as follows: 

(1) Before each iteration the boundary points are updated from the interior 
points adjacent to the boundaries. This can be done by projecting the points 
adjacent to some part of the boundaries onto the corresponding boundary lines and 
keeping the other boundary points stationary, so that the problem remains well 
posed. The updated boundary points are on the initial curves that define them and 
the grid temporarily has the correct slope at these points. 

(2) The problem is solved by the Jacobi method, with the boundary points 
modified, but fixed, for every iteration step. 

Y 

t 

(h-I,N) 

(M,I;-I) 

POSITIVE ROTATION 

&=const 

FIG. 3. The algorithm for the boundary point movement. 

581/74/2-12 
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With this modification, part of the boundary points are moving along the lines 
that define them and their final position depends on the solution itself. The 
procedure is shown schematically in Fig. 3 for an orthogonal domain D. 

4. IMPLEMENTATION OF THE NUMERICAL SOLUTION EXAMPLES 

The directional control functionals (1) and (13) have been implemented in 
addition to the orthogonal functional, given by Cl] 

dx dy(VS %,J)‘. (33) 

The program can generate mesh configurations for simply connected quadrilaterals 
and annular domains, using Dirichlet boundary conditions for every iteration. 
Functional (1) or (13) can be used to control the directionality of the mesh. 

The vector fields were parametrized as 

A I(4 v) = (40 + a,, Y + a,2 Y2)@,, + a14x + %x2), (34) 

where alo, a,,, . . . . a,=, are constants described by the particular problem to be 
solved, and similarly for the remaining components A,, B, , and B,. The derivatives 
of the components of the vector fields were implemented consistnetly with the field 
parametrization. Therefore, both A and B and their derivatives with respect to x 
and y were explicitly included as function subroutines. The program permits using 
a composite functional, combining both the orthogonal, Z,, and the directional, Z,, 
control functionals. The coupling is linear 

with parameter 2 E [0, 11. 

r=(l-A)zo+nI, (35) 

FIG. 4. Final mesh for example 1 (directional control). The initial mesh is shown with dashed lines. 
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FIG. 5. Initial mesh for example 2. 

The boundary movement algorithm was implemented as an option. For such 
cases we consider only orthogonal, simply connected domains, assuming small 
rotational movements of the mesh points, in comparison with the minimum initial 
mesh spacing. This ensures that boundary points will not be propagated off their 
corresponding boundary lines and is certainly not a fundamental constraint of the 
problem. 

The parametrization of the vector field may be chosen differently than (34); it can 
be interpolated from values at initial nodal points, or it can be combined with a 
desirable physical solution of a specific problem (grid adaptation). In addition to 
(33) other functionals may be combined, to control the smoothness and spacing of 
the grid. 

FIG. 6. Final mesh for example 2 (orthogonal control). 
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FIG. 1. Final mesh for example 2 (directional control). 

The following simple examples were solved numerically. The solution of these 
examples can be easily derived analytically as well. In all of them, monotonic con- 
vergence was observed, with the number of iterations increased for more refined 
meshes. The vector fields are shown on the final grids obtained by the proposed 
method. 

1. In the first example, we start with an orthogonal, uniform mesh (Fig. 4) 
and we impose a directional field given by: 

A=(;), B=( (-0.5 + 0.2x)(O.5y - 0.1~‘) 1 ). (36) 

FIG. 8. Final mesh for example 2 (combined directional and orthogonal control, 1= 0.5). 
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For this example, the functional (1) was used, with Dirichlet boundary con- 
ditions. The final mesh configuration is shown in Fig. 5. Notice that the v-lines 
remain straight and t-lines become arcs, conforming with the imposed directional 
field. The solution is scale depended due to the form of the functional used. The 
imposed field satisfies the boundary conditions and locking is prevented due to the 
nonuniformity of the vector fields. 

2. In the second example, we impose the same vector fields given by (36), 
to a skewed quadrilateral. The final configuration resulting from the orthogonal 
control only, is shown in Fig. 6. Figure 7 shows the final configuration for the 
directional control for the same domain. The influence of the combined functional 
(35) can be seen in Fig. 8, for L = 0.5 and for the same initial configuration. Fixed 
boundary conditions and the functional (1) were used in this case. The 
orthogonality functional (33), proved to have a pronounced influence over the 
directional functional ( 1). 

3. The boundary conditions greatly affect the solution. To demonstrate 
this, we examined the solution of a strip (Fig. 9a) with A and B set to the constant 
vectors 

A=(;), B=(-p') (37) 

that represent rotation of the q-lines. The solution requires that the boundary 
points move to accommodate the motion of the mesh inside the domain (Fig. 9b). 
Note that the directional functional can control 5 and rl lines independently. The 

(0) (b) 

FIG. 9. (a) Initial mesh for example 3; (b) final mesh for example 3 (directional control). 
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b 

(0.0) x (5.0) 

FIG. 10. (a) Initial mesh for example 4; (b) final mesh for example 4 (directional control). 

functional (13) was used, in this case, in addition to the moving boundary 
algorithm. 

4. In the fourth example, we used the functional (13) for a rectangular 
domain (Fig. 10a). The directional field is described by 

A=( -;.,>, B=(“;‘), (38) 

representing a rigid rotation of the mesh. The resulting mesh is given in Fig. lob. 
The algorithm for moving the boundary points was used in this case also. It can be 
observed that the solution is scale independed. 

CONCLUSIONS 

In this paper we have demonstrated how Eqs. (10) and (11 ), as well as (14) and 
(1.5) can be used to control the direction of a given mesh. The directional control of 
such a computational mesh is expected to be very useful for solving numerically 
partial differential equations using adaptive meshing procedures for finite difference 
or finite element techniques. 

Boundary conditions seem to play a very important role in determining the 
stability and uniqueness of the mesh generated with the directional control. Locking 
phenomena can be present due to specific combinations of directional field vectors, 
initial mesh spacing, and boundary conditions. In such cases, we have developed 
one simple way to imose boundary conditions of Neumann type so that the 
problem remains well posed. Other control functionals can be included to form a 
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most general combined functional for generating meshes with postulated proper- 
ties [l]. 

The present ideas can be easily extended to account for domains of arbitrary 
shape and connectivity, as well as for other types of boundary conditions and 
integration algorithms. 

APPENDIX A 

1. Derivation of the kernel F of the functional: 

Z,=~jf’dSdv (A.1) 

(AxV~)~=(AI~.“-A~~~)’ (A.21 

(B x W* = (B, rlv - B2vJ2. (A.21 

Interchanging variables we get 

5.x = Y,IJ (A.3) 

4, = -x,lJ (A.4) 

rl.x= -y,lJ (A.51 

v.v = +lJ (A.6) 

dxdy=Jdtdtj. (A.7) 

Therefore, 

F= f’(x, Y, xv,, xl, Y,, yg; t, rl). (A.91 

2. Derivation of the Euler-Lagrange equations: 

(A.lO) 

(A.1 1) 
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From the chain rule, 

aH 
-x as,+B,x,,+y,-+B,y,( 

8% 
Tg- 9g x 

ac aA, 
--xx,--+A,x,,+ y, 
aq all 

s+A,y,, 
as 

with no summation over i and j. Also, 

aA dA aA ‘=-.xg+--i yr 
ag ax ay 

%,-a4 x +a4 
all ax q ~ ‘q 

and the same for 

dA, aAz as, aB, aB, aB* 
-7 -7 

ag ’ T$ ag all’ at Y%j-’ 

3. Jacobi iteration scheme: 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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with no summation over i and j. Inverting (A.21) we get 

439 

(A.22) 

where all terms in (A.23) can be evaluated from the previous iteration. 
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